skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Partridge, Bruce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a joint analysis of the cosmic microwave background (CMB) lensing power spectra measured from the Data Release 6 of the Atacama Cosmology Telescope (ACT) and PR4, cross-correlations between the ACT and lensing reconstruction and galaxy clustering from unWISE, and the unWISE clustering auto-spectrum. We obtain 1.5% constraints on the matter density fluctuations at late times parametrized by the best constrained parameter combination S 8 3 x 2 pt σ 8 ( Ω m / 0.3 ) 0.4 = 0.815 ± 0.012 . The commonly used S 8 σ 8 ( Ω m / 0.3 ) 0.5 parameter is constrained to S 8 = 0.816 ± 0.015 . In combination with baryon acoustic oscillation (BAO) measurements we find σ 8 = 0.815 ± 0.012 . We also present sound-horizon-independent estimates of the present day Hubble rate of H 0 = 66.4 3.7 + 3.2 km s 1 Mpc 1 from our large scale structure data alone and H 0 = 64.3 2.4 + 2.1 km s 1 Mpc 1 in combination with uncalibrated supernovae from . Using parametric estimates of the evolution of matter density fluctuations, we place constraints on cosmic structure in a range of high redshifts typically inaccessible with cross-correlation analyses. Combining lensing cross- and autocorrelations, we derive a 3.3% constraint on the integrated matter density fluctuations above z = 2.4 , one of the tightest constraints in this redshift range and fully consistent with a Λ cold dark matter ( Λ CDM ) model fit to the primary CMB from . Finally, combining with primary CMB observations and using the extended low redshift coverage of these combined datasets we derive constraints on a variety of extensions to the Λ CDM model including massive neutrinos, spatial curvature, and dark energy. We find in flat Λ CDM m ν < 0.12 eV at 95% confidence using the large scale structure data, BAO measurements from Sloan Digital Sky Survey, and primary CMB observations. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract We discuss the model of astrophysical emission at millimeter wavelengths used to characterize foregrounds in the multi-frequency power spectra of the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6), expanding on Louis et al. (2025) (2503.14452). We detail several tests to validate the capability of the DR6 parametric foreground model to describe current observations and complex simulations, and show that cosmological parameter constraints are robust against model extensions and variations. We demonstrate consistency of the model with pre-DR6 ACT data and observations fromPlanckand the South Pole Telescope. We evaluate the implications of using different foreground templates and extending the model with new components and/or free parameters. In all scenarios, the DR6 ΛCDM and ΛCDM+Neffcosmological parameters shift by less than 0.5σrelative to the baseline constraints. Some foreground parameters shift more; we estimate their systematic uncertainties associated with modeling choices. From our constraint on the kinematic Sunyaev-Zel'dovich power, we obtain a conservative limit on the duration of reionization of Δzrei< 4.4, assuming a reionization midpoint consistent with optical depth measurements and a minimal low-redshift contribution, with varying assumptions for this component leading to tighter limits. Finally, we analyze realistic non-Gaussian, correlated microwave sky simulations containing Galactic and extragalactic foreground fields, built independently of the DR6 parametric foreground model. Processing these simulations through the DR6 power spectrum and likelihood pipeline, we recover the input cosmological parameters of the underlying cosmic microwave background field, a new demonstration for small-scale CMB analysis. These tests validate the robustness of the ACT DR6 foreground model and cosmological parameter constraints. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  3. We present Weak Gravitational Lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a > 5σthermal Sunyaev-Zel’dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach, we constrained the average total cluster mass,MWL, accounting for the ACT cluster selection function of the full sample. We find that the SZ cluster mass estimateMSZ, which was calibrated using X-ray observations, is biased withMSZ/MWL = (1 − bSZ) = 0.65 ± 0.05. Separating the sample into six mass bins, we find no evidence of a strong mass dependency for the mass bias, (1 − bSZ). Adopting this ACT-KiDS SZ mass calibration would bring thePlanckSZ cluster count into agreement with the counts expected from thePlanckcosmic microwave background ΛCDM cosmological model, although it should be noted that the cluster sample considered in this work has a lower average massMSZ, uncor = 3.64 × 1014 Mcompared to thePlanckcluster sample which has an average mass in the rangeMSZ, uncor = (5.5 − 8.5)×1014 M, depending on the sub-sample used. 
    more » « less
  4. ABSTRACT We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013–2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped ∼40 per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs), and 203 other transients, including supernovae (SNe). We stack our ACT observations to increase the signal-to-noise ratio of the maps. In all cases but one, we do not detect these transients in the ACT data. The single candidate detection (event AT2019ppm), seen at ∼5σ significance in our data, appears to be due to active galactic nuclei activity in the host galaxy coincident with a transient alert. For each source in our search we provide flux upper limits. For example, the medians for the 95 per cent confidence upper limits at 98 GHz are 15, 18, and 16 mJy for GRBs, SNe, and TDEs, respectively, in the first month after discovery. The projected sensitivity of future wide-area cosmic microwave background surveys should be sufficient to detect many of these events using the methods described in this paper. 
    more » « less
  5. Abstract We present a cross-correlation analysis between 1 resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACTTTcross-power spectrum at 30σsignificance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dustTTspectra are generally well described by power laws inℓover the range 103<ℓ< 104, but there is evidence both for variability in the power-law index and for non-power-law behavior in some regions. We measure a positive correlation between WISE total intensity and ACTE-mode polarization at 1000 <ℓ≲ 6000 at >3σin each of 35 distinct ∼100 deg2regions of the sky, suggesting that alignment between Galactic density structures and the local magnetic field persists to subparsec physical scales in these regions. The distribution ofTEamplitudes in thisℓrange across all 107 regions is biased to positive values, while there is no evidence for such a bias in theTBspectra. This work constitutes the highest-ℓmeasurements of the Galactic dustTEspectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths. 
    more » « less
  6. Abstract Diverse astrophysical observations suggest the existence of cold dark matter that interacts only gravitationally with radiation and ordinary baryonic matter. Any nonzero coupling between dark matter and baryons would provide a significant step towards understanding the particle nature of dark matter. Measurements of the cosmic microwave background (CMB) provide constraints on such a coupling that complement laboratory searches. In this work we place upper limits on a variety of models for dark matter elastic scattering with protons and electrons by combining large-scale CMB data from the Planck satellite with small-scale information from Atacama Cosmology Telescope (ACT) DR4 data. In the case of velocity-independent scattering, we obtain bounds on the interaction cross section for protons that are 40% tighter than previous constraints from the CMB anisotropy. For some models with velocity-dependent scattering we find best-fitting cross sections with a 2 σ deviation from zero, but these scattering models are not statistically preferred over ΛCDM in terms of model selection. 
    more » « less
  7. Abstract We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg2of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower thanPlanckin polarization. We find that the ACT angular power spectra estimated over 10,000 deg2, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the ΛCDM model. Combining ACT with larger-scalePlanckdata, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either thePlanckpower spectra or from ACT combined withWMAPdata, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT andPlanck, and baryon acoustic oscillation data from the Dark Energy Spectroscopic Instrument (DESI DR1), we measure a baryon density of Ωbh2= 0.0226 ± 0.0001, a cold dark matter density of Ωch2= 0.118 ± 0.001, a Hubble constant ofH0= 68.22 ± 0.36 km/s/Mpc, a spectral index ofns= 0.974 ± 0.003, and an amplitude of density fluctuations ofσ8= 0.813 ± 0.005. Including the DESI DR2 data tightens the Hubble constant toH0= 68.43 ± 0.27 km/s/Mpc; ΛCDM parameters agree between the P-ACT and DESI DR2 data at the 1.6σlevel. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  8. Abstract We present Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) maps of the Cosmic Microwave Background temperature and polarization anisotropy at arcminute resolution over three frequency bands centered on 98, 150 and 220 GHz. The maps are based on data collected with the AdvancedACT camera over the period 2017–2022 and cover 19,000 square degrees with a median combined depth of 10 μK arcmin. We describe the instrument, mapmaking and map properties and illustrate them with a number of figures and tables. The ACT DR6 maps and derived products are available on LAMBDA athttps://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html. We also provide an interactive web atlas athttps://phy-act1.princeton.edu/public/snaess/actpol/dr6/atlasand HiPS data sets in Aladin (e.g.https://alasky.cds.unistra.fr/ACT/DR4DR6/color_CMB). 
    more » « less
    Free, publicly-accessible full text available November 1, 2026